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LINEAR PROGRAMMING UNDER UNCERTAINTY IN AN L SPACE

by

Charles S. Fisher

Introduction

The mathematical problem discussed here is encountered

in an attempt to generalize a class of economic models based

on the minimax idea in game theory. The particular situation

considered is that of "linear programming under, uncertainty."

In brief a probability space (n, 4,P) is given and also a

finite family 6J 1=l,... ,n, of sub-a-fields of +, and a

linear continuous functional a on the space of n-tuples

e = (el,...,en) where the ei are real-valued functions on 0,

measurable with respect to 6i" The problem then is to char-

acterize a maximum of < e,a :vwhen e is constrained to lie in

some convex set.

The solution to this problem when 0 is finite and the

constraints are given by matrix inequalities is given by

R. Radner in [6]. In his paper an economic interpretation

of the model is discussed. What follows is an extension to

the situation in which 0 is a nonfinite, countable set, say

the positive integers, Ai sub-a-fields of the discrete a-

field, and the constraints are of the form eT 5 b where T is

an n x n matrix whose entries t are functions on 0, and <

is the usual ordering on Euclidian n- or m-space, and b is
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an m-tuple of functions on 0. The linear functional to be

maximized is of the form

(e.a) =fZ ei(w)ai(w)dP(w)
i=l

As when working with linear programming problems in

finite dimensional spaces, we will characterize the dual pro-

gram and establish sufficient conditions for the equivalence

of the existence of a maximum and that of a nonnegative sad-

dle point of the associated Lagrangian form.

The question as to what topology is appropriate does

not arise when the function spaces are finite dimensional

(i.e., C2 is a finite set) because in this situation the spaces

are reflexive and their weak and strong topologies are iden-

tical. Whereas the theorems for separation of convex sets in

infinite dimensional locally convex linear topological spaces

depend on the class of linear functionals given and the top-

ology in which the sets are closed. For discussions of this

see Hurwicz [3] and [2], chapter 5.

The topology that will be used is that of an L norm on

an n-tuple of functions and instead of considering the entire

conjugate of L as the setting for the dual problem, we have

taken L1. This restriction is imposed because the dual of L.

has no natural economic analogue. The presentation in what

follows is for the case of couples of functions. Its exten-

sion to the n x m case is immediate.

There are various different ways of stating and proving

duality theorems. In what follows, a variation of D. Bratton's
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excellent, though unfortunately unpublished, duality theorem

in [1] is presented. The treatment of the problem is also

analogous to that done by Kretchmer in [4] but simplified

because of the special properties of the spaces considered.

Preliminary Lemmas and an Example of Duality

Let = tl,2,3,...), A = discrete a-field, -i' i=1,2

sub-a-fields of A and P a positive probability measure on

such that P(O) = land P(w) > 0 for all We E f.

Also let E = L (O, lP) x L.(o, - 2 ,P), F = L.(Q,kP) x

L,(QAP), and E' = LI( 2,6 1 ,P) x LI(n, 2 ,P), F' = LI(si, A,P) x

LI(Q,.A,P). [E = conjugate of E' in its norm topology

(I(e'l,e' 2 )1 = max[le12 11,lie !211]) and similarly F = conjugate

of F.1 If T (1 C 22w) is a linear transformation

defined on E by (e ,e 2)(tll12) then eT belongs to F and T ist 2 1 t 2 2

bounded (i.e., continuous) if sup It j(w)l = M < . For if

eT = f then llf'h = suple 1 (W)t l(w) + e2 (w)t 2 1 (w)j = M2IIeH.

1I

The same holds for f 2 , therefore lHeTli : 2Mlell.

The set PE = [e e E: (e1 (w),e 2 (m)) k (0,0) for all w c o)

will be called the positive cone of E. Its conjugate is P@ =
E

{e' E E': < e,e' > = 0). By taking ones and zero's in the

appropriate coordinates, we have that A= [e': (e'l,e'2 )

(0,0) for all w e n). Similarly PF = ff: f ' 0) and =

{f': <f,f'> 0) = (f': f' > 0 (i.e., (f 1 f 2 ) (0,0))).

Also define P= L: X real number and X > 0).

We will consider the following programming problem.
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Given a E E' and b c F, then under what conditions is

the existence of a maximum of <e,a> subject to the constraints

e ?- 0 and eT 5 b (i.e., b-eT E PF) equivalent to the existence

of a positive saddle point of the Lagrangian, 4(e,f') =

<e,a> + <b-eT, f' >.

To do this we will first prove a specialization of the

Minkowski-Farkas lemma and its consequences to D. Bratton's

version of the duality theorem as it appears in Cowles Com-

mission Discussion Paper. Mathematics No. 427 [l].

The reason that the following discussion is necessary is

that the duality theorem depends heavily on the type of closure

of certain convex sets. If X is a Banach space X*, X is first

and second conjugates then in general the X-topology (weak )

of X", the X'*-topology (weak), and the norm topology of X*

are distinct and of increasing fineness (i.e., contain more

open sets). We will consider L whose conjugate space strictly

includes LI; and L1 in the case with which we are dealing is

the conjugate of a Banach space and so possesses a weak

* -topology.

The situation will be made clear by comparing the follow-

ing two lemmas to the Minkowski-Farkas lemma.

Lemma 1. Let X = LI(A,.A,p) and Y = L(A,',-t,) where ii

is finite. If P is a convex cone C X then Pw coincides with

the L closure of P in LI.

Proof:

= (y ~ Y <y,p >? 0 for all p E P)

(x c X- - y,x> k 0 for all y E
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1) LX closure of P C - . If z E L closure of P,

then there exists a net P e P such that for all w c Y <w,p a>

<w,z> hence for all y E i<y)pa> - <y,z> but <y,pa > ? 0,

therefore <y,z> ? 0 and z E

2) PB' C L closure of P. If x 0 L closure of P,

then since the L closure of P is convex and Y equals the set

of all continuous linear functions on X with the L topology

([2], p. 421), we have by the Mazur-Bourgin theorem ([2],

p. 417) that there exists a y0 c Y such that y0 (x0 ) < c-E <

c < yo(P) but P is a cone so y0 (P) t 0; hence y0 E and

YO(xo) < 0; therefore xo ' IB. And the lemma is established.

L closure of P = Fl.

On reversing the roles of X and Y in Lemma 1, we get by

the same argument that the L1 closure of P equals IS.

Note that in the above, because P is convex, its weak

closure and closure in the norm coincide. In the L1 spaces

that we will consider, 0 is countable and P(a)) > 0 for all

w c Q so that the weak and norm topologies are the same ([2],

p. 295).

Lemma 2. Let E, E', F, F', and T be as given above

T: E -.*F then 1) the transpose T' of T where T': F'-*E' is a

well-defined, linear, continuous transformation such that

<eT,f'> = <e,T. for e c E, f' e F'; and 2) if Q is a closed

[weak or norm closed] convex cone in F, then [T-I(Q)] = E

closure of T'(Q) in E'.



Proof -

1) For e E E, fI E F',

<eT, f'> = 1[elt1 1 +e 2 t 2 1]f' 1 dP + f[elt 1 2 +e 2 t 2 2 ]f 2 'dP

= e 1. 2 [t 1 1 f 2 1+t1 2 f 2 ]dP + e 2 4 2 [t 2 1 fl +t 2 2 f 2 ]dP

= c.e,T f' >.

In this situation, conditional expectation is a bounded linear

operator. Linearity is immediate and if X c L then sup iX[

IIXi1 < C, i.e., 1lXii > X(w) ?7 -1iXil; therefore, ,iXli = 1iX11 •

1' X?= -6IXII= -IiXiI soiL'zXjI 1 IXII; i.e., P is a bounded

operator. We have that if T'f' : g, Ig 1 Ht f 11 +t12f ]1

i .M.21 f'!i f 2Mlif'! and similarly for g2 . Therefore T' is

well defined and continuous.

2) If Y F', then T-i(YP) = [T'(Y)]G, for x E T-I(Y@)

T(x) E: X - T(x),Y > 0 --. .x,T'(Y) 0 =- xc[TI(Y) .

Hence if Q is as given = Q by the comment following Lemma 1

and [T-I(Q)9 = [T-l(P@)®= [T'(Q)] = E closure of T1(Q®)

in E' because E' is as X in Lemma 1.

Applying the above two lemmas, Bratton's proof of the

duality theorem follows verbatim where E, E', F, F', T are as

given here and the weak' closure of U'(PR, ' @F) 's replaced

by the E-closure of U'(PR, FE. i0) in E'.

Theorem. If U: R x E -R x E x F is given by U(X,e) =

(X,e,Xb-eT) and U'(PR,0,-10) is E closed in E', then the

following are equivalent:
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1) there exists a maximum of (e,a) for e 2 0, eT : b;

2) there exists a minimum of (b,f') for f'_kO, T'f'*a;

3) C(e,fl) = (e,a) + (b-eT,f') has a nonnegative saddle

point.

Moreover, if there exists e,f' satisfying the constraints,

then the problems 1, 2, 3 have solutions.

By making one additional assumption on the given problem

a sufficient condition for applying the duality theorem is ob-

tained.

Assumption: (bl (w),b2(w)) > (E,E) for some E > 0 and

for all w E Q. This is slightly stronger than the admissi-

bility of (0,0).

We now proceed to show that the conditIons of our modified

duality theorem hold; i.e., if

U: R x E -R x E x F is given by

U(X,e) = (X,e,Xb-eT), then

U'(PR' E' is E closed in E'.

U' is expressed as follows.

<(x,e), U'(5,e',f')> =<U(X,e), (5,e',f')

X 65 + -e,e'> + <Xb-eT,f'>

=X( + ,b,f'>) + <e,e' - T'f' ;

hence U'<5,e',f': = (5 + -b,f'>,e'-T'f'). Now if (6S+<b,f ,

e'-T'f')! is a sequence in U'(PR' PE' F) such that it E-converges,E F'

i.e., weakly, to some ( E,a), e R x E'. We wish to show that
(iE F)  ' 0 ' On

a U'(P , I@, ;i.e., if 0 0, fl >0, e. =0and
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+ <bfa> -' i, e. - T'f' a a (weakly), then there exists

> 0, t > 0, ' > 0 such that 5 + <b = and e,-TIr,= a.

In the following, when subsequences are chosen they will

return the original indices.

By assumption, b > E > 0 so since f1 > 0 therefore

<b,f'> k 0 and hence 5  and -b,f'- are uniformly bounded

and have convergent subsequences; i.e., 5 -.5, and we can make

<b,f converge monotonely to some K, such that 5 + K = g.a

Now

< ab,f? b(D)f (w )dP + 2 (M)f2 ()dP

> E f1'(c(w)dP + E f2'

because b(u ) > (EE) and f > 0. From this inequality and

the convergence of ,- b,f' " we get that f' , is bounded
a

[E f 11(D)dP + E f f 2 (w)dP > E max'i 11 ,f2 11, = af 1 11],

and that -. faI) are pointwise bounded. Hence, by taking a

Cantor diagonal, if, has a pointwise convergent subsequence;

pt 1 1i.e., f ' . r'. Now f l 'dP = f lim fl'dP = f liminf fl'dP _a a%( (
a1' l 1 a a alilf Pliminf f I

ffadP = liminfi < O follows from the above and

Fatou's lemma. Since ?l > 0, kp c'l < - and the same result

on T21 yields ?' E F'. By monotonicity of <b,?'> -K, say,
a

<b.,f - -K > 0, hence

aa0 f[liminf(b-f'f-K) ]dP = liminf l[b. f'-K~dP

= lim[fb.f'dP-K] = lim[<b,f'>-K] = 0,
a a

and

0 = f[liminf(b'fa-K)]dP = fib.?'dP-K

Therefore <b,r' = K.
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We have that f' -Yf pointwise and e1-T'f1')a weakly or,a a a

since E' is an L1 space such that P(w) > 0 for all w e n, the

convergence is also in the L1 norm ([2], p. 259); i.e., J=l,2,

lim JI(e'-[T'f']J) - aJjdP = 0. Now T and, therefore, T' are

obviously pointwise continuous so lim T'f'(w) = T'M'(c). Also

weak convergence where P(a) > 0 and .A discrete implies point-

wise convergence [<x,f. = P(w)f(w) for an appropriate X ([2],

p. 259)] so that pointwise lim e' = T'f' + = . Applying
a a a

Fatou's lemma J=l,2, 0 f f1(e'-[T'?]J')-aJjdP =

f lrminfl(eJ - [ T'f'1] j ) -aJdP :5 liminf fjea-T'f1 J l - aJIdP=O;

therefore e' = TI? + a E E'. Because el, f, 1 0, we have
a a a

el > 0, r' > 0, 6 k 0 such that 5 + <b,P' ;= 1 and e'-T'?'

Hence ( ,a) E U'(PR, F), and it is thence weakly (i.e., E)

closed in E'.

So far we have established a sufficient condition for the

equivalence statement of the duality theorem to hold.

The assumption of strict admissibility of zero is not

sufficient to guarantee the existence of a maximum as is seen

in the finite dimensional case (e.g., T = (- _), b = (20),

a = (1,1)). As the last statement of the theorem indicates,

a maximum exists if the constraint set is nonvoid and the dual

problem has an admissible function.

We can derive a result analogous to the finite dimension

situation which holds in the particular programming problem

chosen. It is that if e0 is an admissible maximum then there

exists a non-negative saddle point (e0 ,f ), and, examining the

Lagrange form, we get
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0 =<b-e T,f = 11'eT~fld + f~- 2f2 '0 0> f- 0T f0 d fbe 0T 0> d

but the integrands are positive so [e 0T(o)] i = b1(cD) except

possibly when f it(w) = 0, 1 = 1, 2.
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